TWO-PHASE DESIGNS
FOR TIME-TO-EVENT DATA

National University of Singapore
July 4t 2022

Paola Rebora
Bicocca Bioinformatics, Biostatistics and Bioimaging Centre - B4,
Department of Medicine and Surgery,
University of Milano-Bicocca, Monza, Italy

% DEGLI STUDI
= o

b

SP UNIVERSI
N
w
_\
== ONVIIN T



e
Two-stage studies and time-to-event data:

» Two-stage designs could be particularly useful in cohort studies with

time-to-event end-points.

« For example to identify new biomarkers.

« In fact cohort studies often have stored biologic samples and
follow-up over many years and will require efficient study

designs for parsimonious use of specimens and to limit costs of

biological analyses.



Example :

Clinical trial (AIEOP ALL-2000) on 1999 children with acute lymphoblastic
leukemia (ALL). Diagnosed from 2000 to 2006.
Bio-bank with samples at diagnosis.
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Biological samples _ _ _ _
stored at diagnosis Time since diagnosis

AIEOP-BFM ALL 2000 study - Conter, et al. Blood 2010 115:3206-3214;
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Example :

Clinical trial (AIEOP ALL-2000) on 1999 children with acute lymphoblastic
leukemia (ALL). Diagnosed from 2000 to 2006.
Bio-bank with samples at diagnosis.

Cytosolic glutatione S-transferasi (GST) genes involved in drug
metabolism. DELETION should increase availability of anticancer drugs
GST-T1 (deletion in 13%-26% of Caucasian population)

Unknown regulatory role

AIM: to investigate the influence of GST-T1 on treatment failure due
to relapse.

Franca R, Rebora P, Basso G et al. Pharmacogenomics 2012;13:1905-16.
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Example of two-phase study :

Clinical trial (AIEOP ALL-2000) on 1999 children with acute lymphoblastic
leukemia (ALL). Diagnosed from 2000 to 2006.
Bio-bank with samples at diagnosis.

Clinical trial cohort (N=1999) with clinical informations and outcome

Biological samples
stored at diagnosis
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Example of two-phase study :

Clinical trial (AIEOP ALL-2000) on 1999 children with acute lymphoblastic
leukemia (ALL). Diagnosed from 2000 to 2006.
Bio-bank with samples at diagnosis.

Clinical trial cohort (N=1999) with clinical informations and outcome

Subsample (n) on which to measure the biomarker

How to select
. the subsample?

'—

i Biological samples
stored at diagnosis
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Example of two-phase study :

phase I phase II

Subsample
with
genotype data
n=7/66

POPULATION
children with acute
lymphoblastic leukemia

TRIAL COHORT

with clinical data
N=1999,

306 relapses

How to select an «informative» subsample on which to
measure the biomarker (i.e. GST deletion)?

OPTIMAL SAMPLING OF 2-STAGE DATA (lecture 4.2)



Example of stratified two-phase study :
Clinical trial on 1999 children with ALL (phase I)

Full cohort Treatment/risk stratification
standard medium high TOT
No relapse 487 ™\ 987 ~\ 219 | 1693
Relapse 28(5%) || 186(16%)%\| 92(30%)| 306
TOT 515 1173 311 1999
\
Subsample Treatment/risk sﬂra’rifica’rion}
standard medium high | OT
No relapse ? ¢ ? ‘(/ > ¥
Relapse ? / ? / ?
TOT 766

Minimum potential follow-up 2 years
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Which sampling fraction?

Optimal Sampling Strategy for two-stage studies
(Reilly, AJE 1996)

To get the highest efficiency and thus MINIMIZE the variance
of the coefficient of interest (marker)

U
the sampling fraction for each stratum should be proportional
to the variability
within the stratum as compared with total variability
U
sample more data from strata with higher variability
— need pilot data
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Pilot data:

AVAILABLE DATA Risk/trt stratification
standard medium high
Not relapse 22 53 8 83
Relapses 14 70 1+1 85
Tot 36 123 9 168

*This strata was very poor represented in the available data (in order to include
it | artificially introduced a faked observation in this strata with a different value
for the SNP, so that it showed variability within the strata).
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Optimal sampling as if binary data

We applied the function optfixn to select an optimal
second-stage sample of a fixed size (n=766):

OPTIMAL Treatment/risk stratification
SAMPLING . .
FRACTIONS standard medium high
No relapse 65(0.13)  255(0.26) 140(0.64) |460
Relapse 28 (1) 186 (1) 92 (1) 306
93 441 232 766

All relapses were sampled (typically).

460 “no relapses” were randomly drawn from the cohort
according to the optimal sampling fractions.
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Subsample — genotyped data:

ACTUAL Treatment/risk stratification
SAMPLING . .
FRACTIONS standard  medium high

No relapse 54(0.11) 193(0.20) 109(0.50) |356
Relapse 21(0.75) 147(0.79)  77(0.84) |245
75 340 186 601

The lab genotyped biological samples of 601 patients:

e 107 with deleted GST-T1, 48 relapses
e 494 not deleted GST-T1, 197 relapses

Meanscore estimate

OR (GST-T NULL vs NORM)=1.19 (95%CI: 0.73; 1.83)



Relapse incidence by GST-T:
weighted versus unweighted estimates

GST-T # at risk # relapses | Relapse incidence Weighted
type relapse
incidence

NULL 48/107=44.9% 18.3%
NORM 197/494=39.9% 14.7%
Efficient design

requires appropriate
analysis!



Relapse incidence by GST-T:
weighted in GST-T deleted subjects (NULL)

GST-T NULL subsample

SAMCI:DLINGS Treatment/risk stratification
FRACTION . .
. standard medium high

No relapse 6(0.11) 34(0.20) 19(0.50) |59
Relapse 5(0.75) 25(0.79) 18(0.84) |48
11 59 37 107

Weighted relapse incidence in GST-T deleted subjects (NULL):

1 1 1
>*075 2> * 079 T 18087 _ 59 _ a3
1 1 1 1 1 1 322 %
S*g7s T2 gt 18*ggztoxgiy t34 gz 19 g3
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Relapse incidence™ by GST-T:

Cumulative incidence

0.15 0.20 0.25 0.30

0.10

0.05

E— :i GST-T NULL

! 5-yrs incidence:
— | 24.4%(16.1-31.9)

a” GST-T NORM

5-yrs incidence:
--------- 16.5%(14.4-18.6)

Hazard ratio from weighted Cox
model adjusted by relevant
covariates (including risk groups)

HR(95%CI)=1.34(0.90-2.00)

______

2 3 4 5

Years since diagnosis

* Rebora P, Valsecchi MG. Survival estimation in two-phase cohort studies with application to biomarkers
evaluation. Stat Methods Med Res. 2014 May 19
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Weighted Cox model for two-phase studies:

« Weighed partial likelihood where weights are reciprocal of
sampling fractions
« variance (adjusted for sampling) can be split in two terms
denoting variation due to:
1. sampling of phase I (0.022) - Estimate of the
minimum irreducible uncertainty for the cohort
2. sampling of phase II from phase I (0.019) - Remain
due to genotyping only the subsample

o B 0.022 _ 054
ef fictency = 402250019 -
54% of efficiency genotyping 30% (601/1999) of the
sample!

Lin D-Y (2000) Biometrika 87: 37-47 Survey package in R by Thomas Lumley
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Optimal sampling with time-to-event
endpoint

« Optimal sampling applied as /fbinary data

« We got 54% of efficiency genotyping 30% (601/1999) of

the sample!

« Data analyses with survival methods (weighted)
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Design of stratified two-phase studies

 Size of the subsample is often driven by budget constrains,
but it is important to assess power

« Which variables should we use for stratification?

« What if pilot data are not available?

Simulations can help in comparing the performance of

different designs and to estimate power in complex settings

Graziano, Valsecchi & Rebora BMC-MRM 2021 Sampling strategies for a
prognostic biomarker



https://www.meb.ki.se/biostat/Sing2022/papers/Session4/Graziano%20Valsecchi%20&%20Rebora%20BMC-MRM%202021%20sampling%20strategies%20for%20biomarker.pdf

Design of stratified two-phase studies

Setting:

Risk Factor (Xpiskract)

Biomarker (X )

N

T

Event

T

“‘“'I Surrogate (Xsu+)

Confounder (X¢,nr)

\ J |

|
Phase II data

|

Phase I data
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Design of stratified two-phase studies

Simulation (2000 simulations of phase I data with N=2000)

We mimic different sampling scheme for second phase data with a fixed size
n (Biomarker measurment):

« Simple Random Sample (SRS)

« Probability Proportional to Size (PPS)

« Case-Control (CC)

« Stratified CC

With strata defined using the following variables:
- event,

- event and risk factor,

- event and confounder,

- event and surrogate.

Weighted Cox model used to assess the influence of the biomarker on the event
(adjusting for the confounder)
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Results of simulations

Table 1 Bias, empirical standard error, mean square error, power and design effect of the biomarker regression coefficient estimate |
ﬂw} for the full cohort and different sampling designs Accuracy of surogate: sensitivity (2. probability of having a positive
surragate if the biomarker is positive)= 0.7 and specificity (ie. probability of having a negative surrogate if the biomarker is
negative) =07, biomarker commaon () and rare (b)

Sampling Stratification n*  Bias SE empirical MSE Power (%) Design effect
design variable

Censoring rate Censoring rate Censoring rate Censoring rate] Censoring rate

0 0.1 0.4 0 01 04 O 01 04 |0 01 04]| 0 0.1 04
a)
Full cohort = 000 0008 =005 0009 0093 0095 Q112 0009 0009 Q03| 99 |97 ] 95 | - - -
1.5R5 - 600 0004 -0MM3 0006 0182 0187 0206 0033 0035 002 54 58| 53 | - - -
2 PPS Event 599 0007 =005 0007 Q173 0180 Q199 0029 0033 0039 65 58 54 | 1003 1003 1005
2a PPS Event; Risk factor 598 0008 =006 0004 Q172 0475 0205 0029 0031 0042] 65 58 52 | 1002 1003 1002

2h. PPS Bvent: Confoursder 598 0003  -0nSs Q002 Q174
2c PPS Event; Sumogate 58 0007 =003 0M3 Qdel 0971 Q190 0026 002 0Bl &5 64 57 | 1106 1129 1004
3CC Eveni 600 0011 0008 0019 Q159 0158 Q179 0025 0025 0032 P+ |68 | &7 | 1179 1219 1352

0179 0203 0030 Q032 0.0t
0
0
3a CC Bwvent; Risk factor 600 000 =0009 0008 Q162 0166 Q182 0026 0028 0033) 72 65 62 | 1139 117 1307
0
0
0
0

501
(%]
L
e

"

Qeag 1002 1000

3k OO Bvent; Confounder 600 02 =0M5 0010 Q162 0081 0175 0026 Q026 00311 73 65 66 | 1082 1187 1354

3c. CC Event; Sumogate 600 0008 006 02 Q148 0153 QA0 0022 Q024 QU029 e |7 6% | 1334 1383 1.485
4 NCC Ewent 50 0008 -0M8 G014 Q189 OU06S Q475 0029 0028 00311 68 a3 &7 | 1066 1144 1378
4]

5 CM Event; Sumogate 546 =004 -0058 -0009 Q151 a7 | 1379 1395 1536

153 0165 0025 0027 0027 67

B=2000 simulations SURROGATE/AUXILIARY = Sens 0.7 and spec 0.7,
n=600 and BM frequency= 25% PBgy = 0.28 (HR=1.323)
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Results of simulations: surrogate/auxiliary

-~
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Full Cohert 2.0
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0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90
Sensitivity Sensitivity

Fig. 3 Power and design effect for different sensitivity levels (i.e. probability of having a positive surrogate if the biomarker is positive) of the
surrogate variable. Scenario: specificity (i.e. probability of having a negative surrogate if the biomarker is negative) =0.7, censoring rate p=0.1,

hazard ratio of biomarker =1.5 and sample size of phase Il (n) =600. Legend: CC stra surr (Case-Control stratified by surrogate), CC post surr (Case-
Control post stratified by surrogate), CC event (Case-Control), CM (Counter-Matching) and SRS (simple random sampling)
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Leukemia data: efficiency comparison

In the example of the 2-stage design on ALL clinical trial we estimated a
54% of efficiency genotyping 30% (n=601 / N=1999) of the sample by
the optimal sampling strategy.

By simulation we can estimate the efficiency of different designs (with
respect to the full cohort, n=N):

Table 2 Efficiency (refers to the full cohort), design effect (refers to Simple Random Sampling) and power for SRS and Case-Control

(CO) designs with hypothetical hazard ratio of the biomarker of interest (HRgy,) of 1.3 and 1.5, biomarker common (25%), censoring
rate p=0.1, type | error 0.05

SRS Case-control CC stratified by surrogate CC stratified by risk factor

Efficiency

HRgy =13 3040% 3891% 43.06% 3447%

HRgy =15 2598% 36.26% 38.51% 32.73%
Design effect

HRgy =13 - 1.23 137 1.20

HRgy =15 - 1.22 1.36 1.18
Power

HRgp= 13 3091% 54.80% 60.15% 54.34%

HRgp= 1.5 5835% 68.10% 70.65% 65.40%

variance of the full cohort (n=N=1999)

efficency =variance in the subsample with size n=601




Leukemia data: power estimate

Table 2 Efficiency (refers to the full cohort), design effect (refers to Simple Random Sampling) and power for SRS and Case-Control

(CO) designs with hypothetical hazard ratio of the biomarker of interest (HRgy,) of 1.3 and 1.5, biomarker common (25%), censoring
rate p=0.1, type | error 0.05

SRS Case-control CC stratified by surrogate CC stratified by risk factor

Efficiency

HRgy =13 3040% 3891% 43.06% 3447%

HRgy = 15 2598% 36.26% 38.51% 32.73%
Design effect

HRgy =13 - 1.23 137 1.20

HRgy =15 - 1.22 1.36 1.18
Power

HRgp= 13 3091% 54.80% 60.15% 54.34%

HRgp= 1.5 5835% 68.10% 70.65% 65.40%

Power can be estimated by simulation by the

design2phase package implemented in R software
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Summary

eOptimal design could be efficently applied also to time-to-

event data (need to work on ad-hoc optimal design)

e Comparison of different sampling strategies could be done

by simulations to evaluate pro/cons in the specific setting

e Power estimate can be achieved by simulations
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